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ABSTRACT

Optical phonon modes in a semiconductor double heterostructure (DHS) are

examined within the continuum model. The interface modes found here can account

for the novel phenomena observed in right-angle Raman scattering. The Hamiltonian
for the electron interaction with phonon eigenmodes is derived and employed to

study polaronic effects in the DHS. The ls-2p +transition energy of a

magnetopolaron bound to a hydrogenic impurity in the quantum well is calculated,

and excellent agreement with experiments is obtained.

1. INTRODUCTION

It is by now well known that in polar crystals such as III-V compounds, the

electron-optical-phonon interaction plays an important role in determining the

electronic properties at higher temperatures. Since these compounds are the usual

materials used in the fabrication of microstructures such as heterostructures and

superlattices, there has been growing interest in the study of electron-phonon
interactions in these structures. Until recently, the bulk Frbhlich Hamiltonian

has been employed in almost all calculations, even though the presence of surfaces

and interfaces is expected to change the nature of lattice vibration modes

dramatically.''2

Although surface optical (SO) phonon modes have been discussed some time

ago, 3'4 they have not been included until fairly recently in the treatment of

polarons confined in a slab
6  or near the interface in semi-infinite systems. 6'7

In recent papers,8 '9 the optical phonon modes in a double heterostructure (DHS) of
polar crystals have been solved within the continuum model. It is found that there

are only two types of phonon modes: the interface (IN) and the confined bulk

modes. The latter may be either longitudinal (LO) or transversal (TO) phonon

modes. Therefore, the Frohlich Hamiltonian involving only the bulk LO phonon

cannot be applied to quantum wells and other microstructures.

We report in this paper the Hamiltonian derived for the electron-optical-

phonon interaction in a DHS. Both the interface and bulk LO phonons are included.

The interaction Hamiltonian is then employed to study the phonon effects on

electronic and optical properties in the DHS. The self-energy of a free polaron is

calculated for arbitrary well width. It approaches the bulk value of the side

material in the limit of d - 0, and that of the central layer in the limit of d -

0. For a magnetopolaron bound to a hydrogenic impurity in the GaAs/AlGaAs quantum

/



well, the transition energy calculated from this Hamiltonian exhibits the strange

pinning phenomena in strong magnetic fields as observed experimentally.

2. OPTICAL PHONON MODES

The detailed solution of phonon eigenmodes can be found in Refs. 8 and 9.
Here we just outline what is essential for our discussion of polaronic effects.
The geometry of our DHS is shown in Fig. 1. Material v (v - 1,2) is characterized
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Figure 1. Geometry of the double heterostructure,

bv the dielectric constants e (w), f and e plasma frequency w number of ionV 'OV OaD pm

pairs n per unit cell, natural frequency w , and polarizability a The

polarization vector P is related to the relative displacement u(r) of the ion pair

and to the macroscopic field E

p(r) - n e*n7 u(r)

1 xI)E , (1)

where we have defined I - [i + a n (Ao-A )] and

A 4w2 /W2 A - 4/w 2 (2a,b)
ow ov pv Vp

I I I



The dielectric susceptibility X V (w) is given by

4x - (\ - A )1 - 4x/3 (3)

and is related to the dielectric function by XV(w) - e (w) - 1. With the frequency

parameters (2), we find from (3)

(W) . 2) (4a)

f +47nna/(l- 7 n) (4b)
vv 3 wV

The electrostatic potential 0(r) that gives rise to the field E satisfies

E(r) - -VO(r) (5)

On the assumption that the dielectric function e V() does not depend upon the

spatial coordinates within each layer, we have from (5) and V-D - 0

(w)V20(r) - 0 (6)

Since the DHS does not possess translational invariance in the z-direction, the

two-dimensional (2D) vectors x and p are introduced in the wave vector k - (,q)

and in the position vector r - (p,z). The potential can then be written as

0(r) - J dic 0(r.,z)e' (7)

Substituting (7) ir. (6), we find that the Fourier components of the potential
satisfy the equation

a  2  
-x O(Kz) - 0 (8)

which may be solved by assuming either

C (w) - 0 , v - 1,2 (9a)

or

az 2 0( ,z) - 0 (9b)



2 2
It is seen from (4a) that (9a) is satisfied by the LO frequencies 2 - Lv"

Because L WL21 the vibrations on both sides of the interface have different

time dependences. The boundary conditions that both 0 and the electric
displacement D must be continuous across the interfaces then require thez

confinement of the LO modes. On the other hand, Eq. (9b) yields the interface
modes of vibration. The polarization eigenvectors of all these modes as well as
the dispersion relations have been worked out in Ref. 8. It is also shown there
that the novel slab modes observed in right-angle Raman scattering'0 can be
interpreted as the interface modes. As discussed in Ref. 8, in the vicinity of the
center of the first Brillouin zone, the antisymmetric interface modes, which are
predominantly transversal, oscillate at longitudinal frequency while the symmetric
interface modes are longitudinal but oscillate at transversal frequency. Using
Eqs. (8) and (9), we find after a straightforward calculation electrostatic
potentials corresponding to these modes. Thus for the confined LO modes, the
Fourier components of the potential are

sin(mwz/d) , for even m

-cos(mxz/d) ,for odd m (10a)

with the normalization constant

ICm()i -W pv V  2_/- [ 2 + (mr/d) I (lOb)

Corresponding to the interface modes, the potentials are

{Cse "_Iz Izi > d/2
Osj (r.-z) (Ila)

C sj(1 + C2/ 1 ) cosh(xz) , Izj < d/2

for the symmetric modes and

-C .sgn(z) e-j l , Izi > d/2

Oaj (.. z) - aj (lib)
C aj(l + f2/e1 )sinh(Kz) , Iz < d/2

for the antisymmetric modes. The function sgn(z) - 1 for z > 0 and -1 for z < 0.
The index j - 1,2 in Eq. (11) labels the two branches of the symmetric or
antisymmetric interface modes which have the same normalization constant as
discussed in Ref. 8. The normalization constants are given by

2 2
4in ocd/2 [iXl cd n2X21]}1C(,)I 2 / -2 y tan (T) + (12a)

Wpl p2



__2 2
-. 4wd /2 d ft~7iX1  '2 a nd1IC(j - e 2r. / + - tanh( (12b)
aj'Ae2 2 2 2j

tpl "p2

3. ELECTRON-PHONON INTERACTIONS

To derive the Hamiltonian operator, we start with the free polarization or

the free phonov. In terms of the polarization vector w and its canonical conjugate

r, we can write the Hamiltonian in the form

H dr [*(r) (r) 2+ *(r) (r)] (13)
ph =2 LJ 2 a a +wa a (3

apv

r and w can be regarded as quantum mechanical operators and can be expressed in
terms of their Fourier components as

7()- JJX/8Aw LM [a m(r) + a m(-r )7r(r)

+ {l/81rAw (oc) [as(K) + at ('K)];s (r)

+ . 18xAw ('x) [aaj (x) + aj (-)la (r)l (14a)

lr(r) - i./WOLU/8wA [am( ) a- (i)Jim(r)

+ 'W A { sj(/8rA [a () a (PC ) ] s(()

PC,M

i/W .(c)/8wA [a aj.() - a aj (-K)] W aj.(r) (14b)ij a aa

In Equations (14), we have introduced the area A of the interface, and the creation

(annihilation) operators at (r.) (am (n)) for the confined modes and a. , (ic)m m sj, aj

(a , aj ()) for the symmetric and antisymmetric interface modes of phonons. They

obey the commutation relations



at 6(PC- 0) (15a)[at (),a()] -

fat(, ' a (ic')] - (a (i),a (r.')] - 0 (15b)

Using these commutators as well as the orthonormality relation for the

eigenvectors, it is straightforward to show that

Hph - HLO + HIN (16a)

HLO - 2 YWS [am('K)am(') +1 (16b)

c,m

H W(K)(at ) a .('P0 + -]+ OW (/C)[(a . (x~)a . (x) + -i
IN -£ {sj( sj 2 aj aj aj 2]

r,,j
(16c)

The interaction energy for an electron interacting with the polarization at a

point r is represented by the Hamiltonian

H e - - eO(r) (17)

Regarded as a quantum mechanical operator, the scalar field can be expressed, with
the help of (1), (4) and (5), as

O(r)- X/8wAI [am(rw) + a t (-)]O4m ( r)

pc.m

+

+~ I )(i8 Aw .L . (-r+) + a t .( i ) ~ -

s r)[ass (-. (r)

+ X/8Afaj (PC) [a aj(i) + a .(-K)]Oaj(r)j (18)

Combining (10a), (11) and (18), we find after some algebra the interaction
Hamiltonian

e-ph he-LO + He-IN (19)

H - - ei { B () cos( 7-- [a (rc) + at 'O)

m-1,3...
KC



+ Bm(x) silnC--)[am(C) + a(

m-2,4 ...

HeIN -- e B (K) [a + ats,j

- sgn(z)B a(P)[aa( + at (- )]} for Izj > d/2 (21a)
aj a~ja,j j

. -. oh~zH " eiB' cosh(d) a + at - 0e-IN Le 1 B cosh(sd/2) sjj

sinh((z) [a + at .) for z < d/2aj sinh(rd/2) a,j a,j J
(21b)

The coefficients can be calculated from (lOb) and (12). The results are

IB( 2 e e2- M C (,)12 - 47e2 XWLI - I ] (22a)

8xAwL X Ad(c 2 + I f ov-

d

IBsj,aj (PC)12 e2M e iC ) (22b)

s8 aA .( ) s j, aj
sj , aj

which leads to

IBsj (PC Ae X sj (0 [E1tanh(2) + C2] (23a)

(-12 ire 2  - -drdIBa ( ) 2  A e 00( /E[C cth(-) + c2 (23b)

ajA. aj 123b2

For convenience, we have defined in (23) the dielectric functions c (w) by
V

S2 14)
(W) C (W) C f ( (

V V Ov V

4. POLARON IN A DHS

We now proceed to calculate the polaron self-energy by perturbation theory.
The unperturbed ground-state wave function is taken to be



Io> - Ik 0; n > - e f(z) In > (25)

where electron states are characterized by a plane wave k in the xy-plane and the

ground state 0 in the z-direction. The electron wave vector is defined as k -e

(k ,k z) and the electron ground state wave function in a quantum well is given by

C cos(kzd/2) expik'(Izl-d/2)] Izi d/2

-l C cos(k zz) , IzI < d/2

z

The wave numbers k and k' are related to the electron subband energy E2 by
z z

kz - J2meE 234
2  kz - J2me(Vo'Ej)/2 (27)

with E determined by the transcendental equation

E - V cos2(A J2m E /)2 ) , 2 - 1, 2, (28)
o 2 e I

The normalization constant C is given by

C - J2kz'/(kzd + 2) (29)

The phonon state in- > is specified by n phonons with wave vector k - (c,q) and
k,P

index P labeling the phonon mode, which may be one of the interface or confined LO
modes.

The unperturbed energy of the electron in the ground state (25) can be

written as

- + E2  + (n+ )W . (30)2me  rl,+
ke e

In the weak-coupling approximation, the corrections due to the electron-phonon
interaction can be calculated by standard perturbation theory as

(0)_>12 / ((0) 2 (0) -

14~~ ~ ~ k1 -,cp l -.#O.>
e e k k

AE1 + AE2 4- AE3, (31)



where we have assumed that transistions to or from a state with more than one
phonon are negligible. Because we are only interested in the electron self-energy
due to electron-phonon interactions, matrix elements corresponding to interband
transitions are all ignored. With the Hamiltonian operators given by (19)-(21),
and the wave function by (25), we find, after integration over the phonon momentum,
that

AE - - ZLLI 7U 2 k /2m e  (32a)

AE2 - -aL2OWL2 -L2 '2 k 2/2m e  (32b)

AE 3 - - FO dx a IN(0)Osj(r) - 0IN 2k 2 /2m e (32c)

J

The parameters a and 7 are related to the Fr6hlich-type coupling constants
involving the particular phonon modes indicated by the subscripts. Explicitly, the
a's are given by

4 aFl I4 2[1 + cos (kzd) r mr

a~ Kd L mir 2kd2i(d) ] n d

m-1,3... 1 -P1

(33a)

4aF2  4 t 2 n t l

- IC 4 cos2 (k zd/2) F dt 2 + k 2t (33b)
p2 p22

t2 ~p2 0 [t 2 + 4(k'/Kp2)2(t2-1)

oIN - aF/Kpsi ) Q 2 0 )  psj() 2 + i (33c)

and we have defined the function

2cos 2(k znh(Kd/2) 2k zsin(k zd)

- + 2k' K +z x +4k
z

+() cos(k d) (34)2tanh (-
x2+ 4k 2 Z

z

K and K measure the polaron size due to the LO phonon in materials 1 and 2,p1 p2

respectively, while aFl (a F2 ) denotes the usual LO-phonon-electron coupling

constant of the Frolich type in material 1 (2). They are given by



I K 1 Icl4 1 [1 + cos(k d)/[l -- k-zd

Ll KP1 d m- 1,3,....M r

x F dt t/[t + (Kmrd) 2 (t~l)3 (35a)

P1

F2 4 2 3tt( +3b

VL2= k'K cos (kzd/2)f dt t/(,E + 2kz/K 2 )
2 (t+l) (35b)

z p2 0

SfdcK 2  4 3 2 2 3
IN x d a 22Fsj()ICI /K psjQ (x)[(/K psi ) + 11 (35c)

0

Substituting Eqs. (32) into (31) we find

-(0) -- _a -W a W r a() c .()
- LliLl - L2 L2 d I "iN(K)sj)

e e J

2k2

2m + -f +  (N 36)

e

Combining (36) and the unperturbed energy (30), we obtain immediately the ground-

state energy of the interacting electron-phonon system as

2k2

E - + E + (n + I) W , - AE (37)
2m* 2 2 KC'

k e
e

where

- m /( - 'Y -f (38)
e e L L2 IN

is the polaron effective mass and

AE -aLl WLl + aL2 OW L2 + f j dc aIN(r.)Ow. (X) (39)

JU

Equation (39) is now employed to compute the binding energy of a polaron in

the GaAs quantum well of a GaAs/AlAs double heterostructure. The results are

plotted as a function of the well width d in Fig. 2 in which contributions from the

confined LO modes and interface modes are shown by dotted and dashed lines,

respectively.
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Figure 2. Polaron binding energy as a function of the
well width. The dotted and dashed lines represent the

contributions from confined LO and interface modes,

respectively.

It is observed that for small d, our results are qualitatively different from

what can be found in the literature. In fact, this is the first calculation that

gives in the limit of d - 0 the correct self-energy , the corresponding value in

material 2. This is because we have included the contribution from confined LO

phonons in material 2 in our Hamiltonian. The interface modes play an important

role in the small-d regime. Their influence quickly diminishes as d increases. It

is important to note that interface phonons are responsible for the pinning effect

observed in a quantum well on the transition energy of the polaron bound to a

hydrogenic impurity.'' This is discussed in the following section.

5. TRANSITION ENERGY OF A BOUND MAGNETOPOLARON

Recent experiments'' ' 1 2 reveal that the resonant effect of the electron-

phonon- interaction on the is- 2 p transition energy of a magnetopolaron bound to a

hydrogenic impurity in Gas/AIGaAs multiple-quantum-well structures exhibits the

pinning phenomenon at an energy below the TO-phonon energy. To our knowledge, the

origin of this surprising effect has not been understood.1 3  Here we attempt to

calculate this transition energy in the GaAs well of a GaAs/AlGaAs DiS.

Consider a donor impurity at the center of the well as in the case of the

sample used in the experiments. A magnetic field is applied along the axis of the

quantum well. The total Hamiltonian can be written as



H - H +H + H (40)e ph e-ph

where

2

H -[p - - A]/2- - + (z (1ae - c e (41a)
0

represents the energy of a hydrogenic impurity confined in the square well given by

VB(Z) - V , z >d/2 (41b)

the free phonon energy Hph is given by (16) and the interaction He-ph by (19)-(21).

The unperturbed energy levels of the hydrogenic impurity described by (41a)
are calculated variationally. For the trial wave function, we take

- f(z) G(p,z,o) (42)

The function f(z) is the solution to the square-well problem and is given by

cos (kz) , z < d/2

f(z) -k'z (43)

Ae z , z > d/2

where k and k' are defined in (27) with E2 representing the energy of the first
z z .

subband. The function G(p,z,o) describes the internal states of the donor and is
chosen to reflect the symmetry properties of the system,

Im im -2/4 -72z/

G(p,z,O) - p m( e e e , (44)

where is the variational parameter to be determined by minimizing the ground-
state energy.

The interaction He-ph is then treated as a perturbation, and the energy

levels are calculated by means of Wigner-Brillouin perturbation theory. The result
is, 4

2. B + 2 j<n H e- hI i
> 1 2

E(2i) E.(B) E (B) + d K((4)

((7 n E () -En(B

where E.(B) stands for the corresponding unperturbed energy. The calculation is

rather complicated, and detailed discussion of the procedures will be published
elsewhere.15 Here we just mention that the Hilbert space has been truncated to
only the lowest three states in our second-order perturbation term. In other
words, only is, 2p+ and 2p. are included. For the particular samples used in these

.mm m m m mm ~ m(q11 +m



experiments,1'1 2 all other states including 2p are pushed up by the quantum well

way too high because of the broken symmetry and cannot be reached with presently-
available magnetic fields. Furthermore, interactions of the electron with lattice
:ibrations outside the well under consideration are ignored, since they are
important only for a very narrow (d < 10 A) well, while d is larger than 100 A in

zhe experiments considered here.

420A

380 F go. 12o.-!s)

,O. 12o -is) ... . ........

- 0 ~---------.--------- -------

- - - - TO--- --------

ABuffalo 185T)
140 F_ -I B M.l/ -/ / g

7 FON4L (S/1-5/51891

100 C FBNML 17/2A-7/25/BS)

Q FB"NL I1/20/BhI

60 I
0 12 16 20 24

aonet2c Fieia M)

Figure 3. ls-2p+ transition energy as a function of the

magnetic field B. Data are taken at SUNY-Buffalo and at
the Francis Bitter National Magnet Laboratory in a series
of measurements as indicated at the lower right corner.
The heavy solid line represent results from the present
theory and the straight line is the result without
electron-phonon interaction.

The ls-2p+ transition energy calculated by computer iteration is plotted as a

function of the field B in Fig. 3 along with the newly-improved set of data. 1
2 It

is remarkable that the theoretical curve breaks into three branches separated by
two gaps, in good agreement with experiments. The occurrence of gaps reflects the

energy level repelling caused by the strong resonance interaction when the
transition energy matches the phonon energy. Since the electron does not couple to

TO-phonons, this pinning phenomenon must be due to the electron interaction with

interface phonons which oscillate at frequencies between the bulk wL and wT" The



interface-phonon coupling alone, however, is not adequate for a complete
understanding of this phenomenon. There are still small discrepancies between
experimental data and the theory, especially in the lower branch near the gap.
Minor corrections such as the nonparabolic effect on the effective mass can
probably account for the discrepancies. This and other possible corrections will
be discussed in a forthcoming article. 15
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